首页> 外文OA文献 >Adaptive cubic regularisation methods for unconstrained optimization. Part I: motivation, convergence and numerical results.
【2h】

Adaptive cubic regularisation methods for unconstrained optimization. Part I: motivation, convergence and numerical results.

机译:用于无约束优化的自适应三次正则化方法。第一部分:动机,收敛性和数值结果。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An Adaptive Regularisation algorithm using Cubics (ARC) is proposed for unconstrained optimization, generalizing at the same time an unpublished method due to Griewank (Technical Report NA/12, 1981, DAMTP, University of Cambridge), an algorithm by Nesterov and Polyak (Math Program 108(1):177-205, 2006) and a proposal by Weiser et al. (Optim Methods Softw 22(3):413-431, 2007). At each iteration of our approach, an approximate global minimizer of a local cubic regularisation of the objective function is determined, and this ensures a significant improvement in the objective so long as the Hessian of the objective is locally Lipschitz continuous. The new method uses an adaptive estimation of the local Lipschitz constant and approximations to the global model-minimizer which remain computationally-viable even for large-scale problems. We show that the excellent global and local convergence properties obtained by Nesterov and Polyak are retained, and sometimes extended to a wider class of problems, by our ARC approach. Preliminary numerical experiments with small-scale test problems from the CUTEr set show encouraging performance of the ARC algorithm when compared to a basic trust-region implementation. © 2009 Springer and Mathematical Programming Society.
机译:提出了一种使用Cubics(ARC)的自适应正则化算法进行无约束优化的方法,同时归纳了由Griewank(技术报告NA / 12,1981,DAMTP,剑桥大学)提出的未公开方法,这是Nesterov和Polyak的算法(Math程序108(1):177-205,2006)和Weiser等人的提案。 (Optim Methods Softw 22(3):413-431,2007)。在我们的方法的每次迭代中,确定目标函数的局部三次正则化的近似全局极小值,这确保了目标的显着改进,只要目标的Hessian是局部Lipschitz连续的即可。新方法使用了局部Lipschitz常数的自适应估计和近似于全局模型最小化器的近似值,即使对于大规模问题,该近似值在计算上仍然可行。我们表明,通过我们的ARC方法,Nesterov和Polyak获得的出色的全局和局部收敛性得以保留,有时甚至扩展到更广泛的问题类别。带有CUTEr集的小规模测试问题的初步数值实验表明,与基本的信任区域实现相比,ARC算法的性能令人鼓舞。 ©2009斯普林格与数学编程学会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号